The IASI/AIRS Radiances/Retrieval Data Sets Plans for CrIS/ATMS Proxy Radiance/Retrievals and Evaluation

By

Murty Divakarla¹, Chris Barnet², Mitch Goldberg², Tom King³, Eric Maddy³, Walter Wolf², Xingpin Liu³, Antonia Gambacorta³, Zhaohui Cheng ³, Fengying Sun³, Guang Guo³, Yi Song, and Lihang Zhou

Xu Liu and Susan Kizer NASA, LARC

Bill Blackwell's Group MIT

¹IM Systems Group Inc., Rockville, Maryland ²STAR, NOAA/NESDIS, Camp Springs, MD ³QSS Group Inc., Lanham, MD

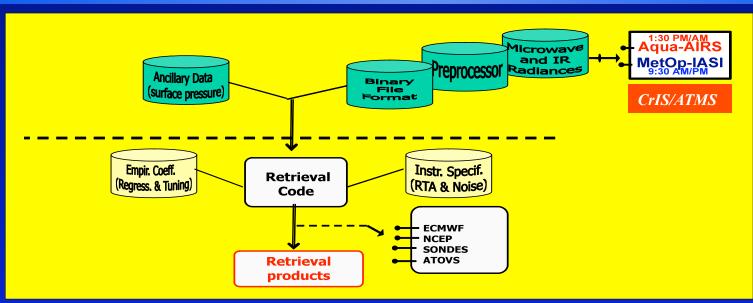
E-Mail Contact: <u>Murty.Divakarla@noaa.gov</u>

Acknowledgements: Tony Reale, Frank Tilley, Kevin Garrett, NOAA/NESDIS/OSDPD

Overview

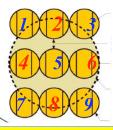
- Resources in place at NOAA/STAR to expedite NPF CrIS/ATMS EDR product evaluation
- On-going efforts and implementation plans toward:
 - » CrIS/ATMS (CrIMSS) proxy data generation using IASI/AMSU-A/ MHS and (AIRS/AMSU-A) data sets
 - Three data sets being used for CrIMSS proxy radiance generation and evaluation are described.
 - Preliminary results on the generation of CrIS/ATMS proxy radiance data sets.
 - » Evaluation of Northrop Grumman Aerospace Systems (NGAS) CrIMSS Proxy Retrievals (EDRs) With:
 - IASI/AIRS retrievals and Matched in-situ data sets.
 - A brief summary on the evaluation of NOAA-NUCAPS AIRS/IASI retrievals is included
 - CrIMSS EDR products from NOAA Unique CrIS/ATMS Product System (NUCAPS)

Resources and Plans at NOAA (To Evaluate CrIS/ATMS NGAS EDR Products)



- 1. Product Retrieval Algorithm(s)/Retrieval Products
 - » NOAA Unique CrIS/ATMS Products (NUCAPS)
 - AIRS V5 Retrievals; IASI Retrievals (and future CrIMSS Retrievals)
 - » NGAS Operational Algorithm Science Code Interface
- 2. Validation Data Sets (Three Different Data Sets)
 - » IASI/AIRS Radiances, Retrievals with Matched Global RAOBs, ECMWF, GFS
 - » Focus Day Data Sets of AIRS/IASI, ECMWF etc.
 - » AEROSE (Nick Nalli's talk)
- 3. Diagnostic Analysis and Monitoring tools
 - » For Satellite Radiances
 - » Retrievals
- 4. Ongoing Efforts/Plans for NPP- C1 & C3 CrlS/ATMS
 - » Implementation of NGAS Algorithm at NOAA/STAR
 - » Proxy Radiances (CrIS/ATMS) for the Focus Day 10/19/2007
 - » Implications of Using CrlS/ATMS Proxy Radiances from IASI/AMSU-A/MHS; AIRS/AMSU-A


1. Product Retrieval Algorithms / Retrieval Products NOAA Retrievals of Core Products and Trace Gas Products



- The NOAA level 2 retrieval processing system was developed during the Aqua mission (AIRS/AMSU)
- Expanded to retrieve MetOp (IASI/AMUS-A/MHS) T(p), q(p), O3(p) core products, and trace gas products (CH₄, CO, CO₂etc.)
- Emerging as NOAA-Unique CrlS/ATMS Product System (NUCAPS)
- Identical systems one for research and the other for operations for the IASI
 - » Research Version -
 - Reprocessing Options with Algorithm Upgrades, New Data
 - Emulate Various IASI/ AIRS Retrieval Algorithms
 - Testing New Ideas in Retrieval Algorithm

Product Retrieval Algorithms/Retrieval Products AIRS (V5) and IASI Retrievals NGAS/NUCAPS CrIS/ATMS Products

Г -	MetOp IASI (4 FOVs)	NUCAPS	Channels Used in The AIRS/IASI Physical Retrieval				
	+ AMSU-A	IASI+AMSU-A/B NUCAPS Retrieval		IASI EDR Products NUCAPS AIRS EDR Products		AIRS	IASI
	MHS	Algorithm]		CC	58LW 15um	69LW +SW
	Aqua AIRS (9 FOVs) + AMSU-A	AIRS+AMSU-A NUCAPS Retrieval Algorithm			T	91 sw + LW	137 LW +SW
	NPP CrIS (9 FOVs) ATMS (Proxy)	CrIS/ATMS NUCAPS Retrieval Algorithm		NUCAPS CrIS/ATMS EDR Products	Q	41	79
					О3	41	53
					CO	36	33
					СН4	59	59
	NPP CrIS (9 FOVs) ATMS (Proxy)	CrIS/ATMS NGAS Retrieval Algorithm		NGAS CrIS/ATMS EDR Products	CO2	70	79
					HNO3	14	14
					N2O	58	58
					SO2	60	60
		NGAS					

Validation Data Sets

Data Set 1: Collocated AIRS/IASI, In-Situ/Forecast data About 60,000 Matches for IASI (2008-Current)
More than 150,000 Matches for Aqua AIRS (2002-Current)

TIVISG

MetOp-IASI/Aqua-AIRS Match-up Database

Aqua-AIRS: (2002- Current)

MetOp-IASI: January 2008 - Current)

ŸRAOB Measurements Matched to Aqua (1:30 AM/PM) and MetOp(9:30 AM/PM) Satellite Observations

ŸMetOp-IASI/AMSU-A/AMSU-B Level1B Radiances

ŸIASI Level-2 Retrievals

ŸAqua-AIRS/AMSU-A Level1B Radiances

ŸAIRS Level-2 Retrievals

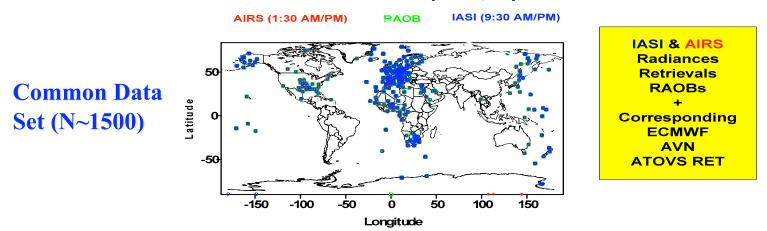
ŸNCEP-GFS (AVN) Level2-Forecast/Analysis

ŸECMWF Level-2 Forecast/Analysis

ŸNOAA-18 ATOVS/M2-ATOVS Level-2 Retrievals

Collocated Within ±3 Hrs. & 100 Km Radius Data Used : January 2008 - February 2009

IASI and AIRS Global RAOB Matches (2008-2009) for Proxy Data Generation with both IASI/AIRS



AIRS- Accepted Matches (After RAOB Selection):7897 (NH:75%,SH:25%); (LAND:90%, Sea:10%); (Day:48% Night:52%) Tropics:12%; Mid-Lat:68% Polar:20%

IASI- Accepted Matches (After RAOB Selection):21035 (NH:70%, SH:30%); (LAND:77%, Sea:23%); (Day:60%,Night:40%) Tropics:30%; Mid-Lat:63% Polar:7%

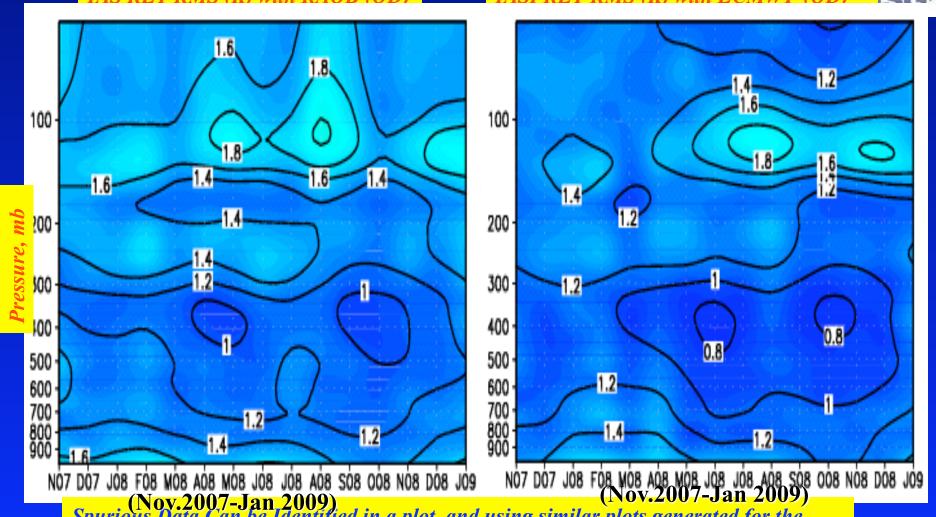
Matched Locations of MetOp-IASI, Aqua-AIRS with RAOBs

This Data set can be used to generate CrIS/ATMS Proxy Radiances from both the IASI/AMSU-A/MHS and AIRS/AMSU-A to understand CrIS/ATMS retrievals and Cloud–Clearing Aspects.

What Has been Done at NOAA With These Data Sets

- Multi-Satellite Instrument Retrieval Product Evaluation with RAOBs, O₃SNDs, ECMWF*
- - Validity of the in-situ meas. (e.g. RAOBs) vis-à-vis ECMWF, GFS
 - AIRS Retrievals vs. RAOBs, ECMWF; IASI Retrievals vs. RAOBS, ECMWF; AIRS vs. IASI; AIRS/IASI vs. ATOVS;
 - Implications/Experiments from Version to Version
 - Statistics (Global, NH, SH, Midlat etc.), Categories (Land, Sea, All)
- Point-Measurements and Validations As a Precursor to Interpret Global Grids/Annual Cycles derived from the Retrievals*
- Differences and Impacts of 9FOV (AIRS) vs. 4 FOV (IASI) Cloud Clearing*

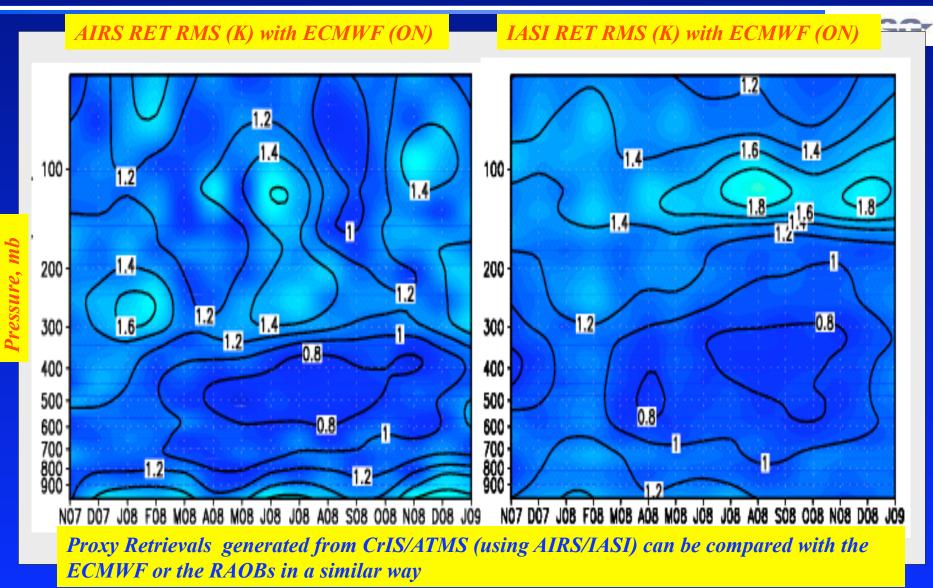
The Intent here is: Whatever is done with IASI/AIRS radiances/retrievals could be performed with CrIS/ATMS through Proxy radiances/retrievals.

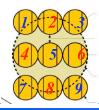

^{*} My earlier AIRS Science Team Discussions have some coverage on these items (Murty Divakarla et al., JGR, 2006, 2008)

One Year of Retrievals at a Glance (Nov.2007-Jan 2009) IASI T(p) Ret vs. RAOB; vs. ECMWF – (Ocean Day, NH) (Note: Similar Maps are Available for Land, Sea, ALL; Day, Night ALL)

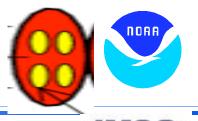
IAS RET RMS (K) with RAOB (OD)

IASI RET RMS (K) with ECMWF (OD)

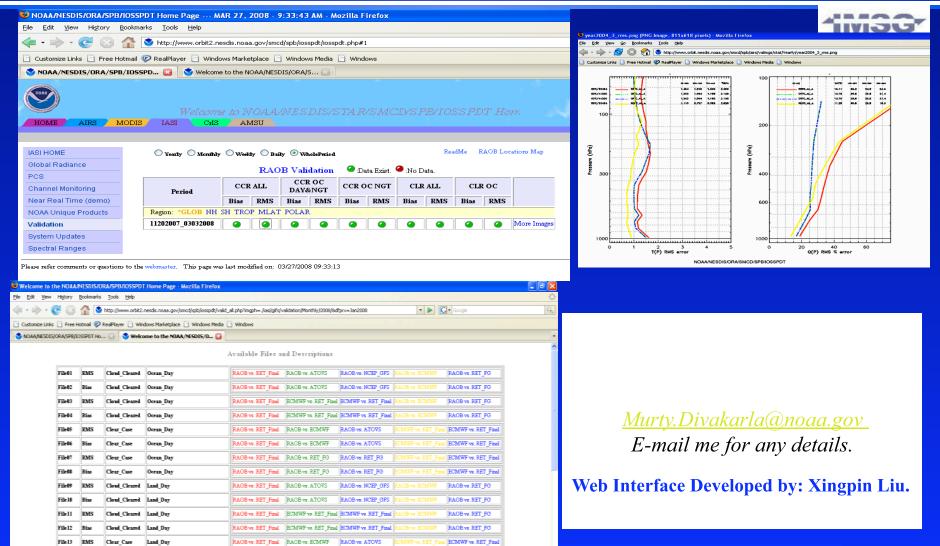



Spurious Data Can be Identified in a plot, and using similar plots generated for the week, and for the individual days, one can QC Check for truth, ret etc.

One Year of Retrievals at a Glance (Nov.2007-Jan 2009) AIRS T(p) vs. ECWMF; IASI vs. ECMWF - (Ocean Night, NH)



(Note: Similar Maps are Available for RAOBs, Land, Sea, All; Day, Night ALL)


IASI & AIRS Summary Using One Year of Data (2008)

- **HIVISG**
- Results from this investigation reveal that the IASI retrievals are quite comparable to AIRS retrievals with a little higher yield.
 - » AIRS Mid-Troposphere Temperature Retrievals are slightly better over the Sea
 - » AIRS Retrievals are better over the Polar Region
 - » IASI Water Vapor Retrievals are Slightly better
- The AIRS retrievals appear to attain some advantages with 9 FOV cloud-clearing compared to IASI 4 FOV cloud clearing
- IASI 4 FOVs Cloud clearing
 - » Slight tendency of confusion to contrast clear and overcast

Web Interface for IASI/AIRS Validations

Data Set 2: Focus Day(s) Data Sets for Aqua-AIRS/MetOp-IASI

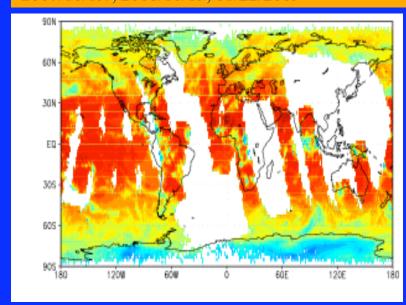
Aqua-AIRS Focus Days + ECMWF + GFS

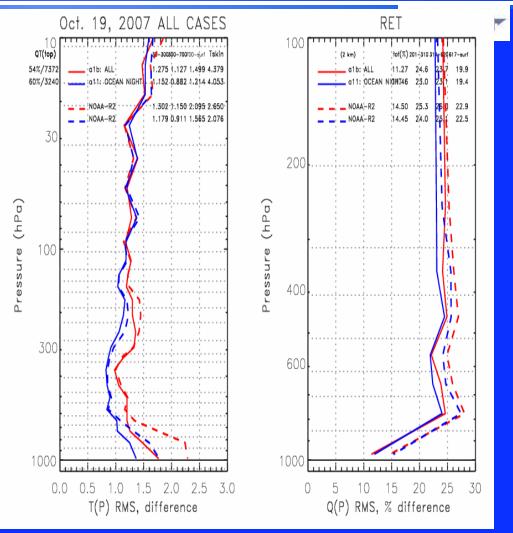
2002-07-04 2002-07-20 2002-09-06

2002-09-29 2002-11-16 2003-01-03

2003-01-04 2003-02-20 2003-04-09

2003-05-27 2003-07-14 2003-08-31

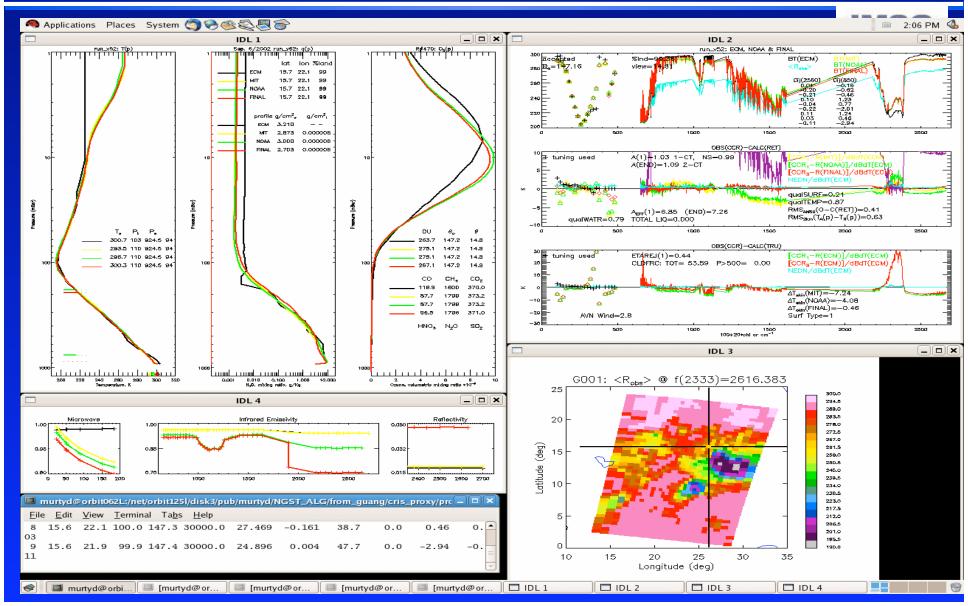

2003-10-18 2003-12-05 2004-01-22


2004-03-10 2004-04-27 2004-06-14

2004-08-01 2004-09-18

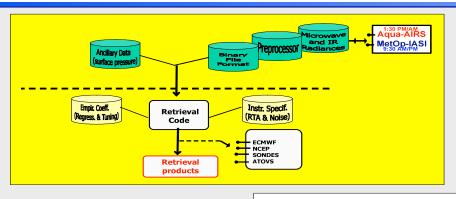
IASI Focus Days + ECMWF + GFS

2007/10/19/, 2008/10/19, 01/22/2009



2007/10/19 IASI Coverage

IASI/Retrieval Statistics with ECMWF
Antonia


3. Diagnostic and Analysis Tools Interactive Ret-evaluation System (IRS) at NOAA Used in NUCAPS, Planning for CrIS/ATMS

Heading Towards CrIS/ATMS NGAS & NUCAPS Products Evaluation Plan

MetOp-IASI/Aqua-AIRS
Match-up Database
Aqua-AIRS: (2002- Current)

MetOp-IASI: January 2008 - Current)

- ŸRAOB Measurements Matched to Aqua (1:30 AM/PM) and MetOp(9:30 AM/PM) Satellite Observations ŸMetOp-IASI/AMSU-A/AMSU-B Level1B Radiances
- ŸIASI Level-2 Retrievals ŸAqua-AIRS/AMSU-A Level1B Radiances
- ŸAIRS Level-2 Retrievals
- ŸNCEP-GFS (AVN) Level2-Forecast/Analysis
- ŸECMWF Level-2 Forecast/Analysis ŸNOAA-18 ATOVS/M2-ATOVS Level-2 Retrievals

Collocated Within ±3 Hrs. & 100 Km Radius Data Used : January 2008 - February 2009 IASI/AIRS Focus Day Granule Files

IASI Level1C DownLoads

NOAA Binary File Granule Format

NUCAPS Products
from AIRS/IASI
Temperature/Water Vapor Profiles
Trace Gases etc.
Global Grids

Proxy Data Generation
Algorithms for
CrlS/ATMS

Xu Liu (IASI), Joel Susskind (AIRS) Bill Blackwell (AMSU-A/B)

Proxy Validation of NGAS Products with

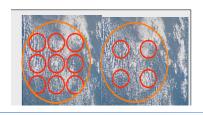
- (1) RAOBs, ECMWF
- (2) Intercomparison with NUCAPS
 Products from AIRS and IASI

NGAS CrIS/ATMS

Operational Retrieval

Science Interface

Implementation



Issues: Proxy Data Generation from AIRS/AMSU-A and IASI/AMSU-A/MHS

	$\widetilde{R}_{i,k}^{CrIS}(\theta) - \overline{\widetilde{R}_{i}^{CrIS}(\theta)} = \sum_{j} M_{i,j} \left(R_{j,k}^{AIRS}(\theta) - \overline{R_{j}^{AIRS}(\theta)} \right)$	$R_n^{CrIS} = \frac{1}{N} \sum_{k=0}^{N-1} \frac{a(k)}{g(k)} \left(\sum_{j=0}^{M-1} R_j^{IASI} e^{2\pi i j k / M} \right) e^{-2\pi i k n / N}$
Instrument	AIRS/AMSU-A/(AMSU-B) Grating, 2378 Channels, @v/1200 cm ⁻¹	IASI/AMSU-A/MHS Interferometer, 8461 Channels@ 0.5cm ⁻¹
Orbit	1:30 PM/AM; Altitude 705 km	9:30AM/PM;(ALT: 833km ~NPP C1)
FOVs	3 x 3	2 x 2
Method Used	Model/Regression for Proxy Data Generation	Continuous Spectrum with finer Vertical Res; Direct Transformation of Radiances From IASI Radiances
Data Period	September 2002-Feb. 2003 with MHS Need to Compromise to Use Data without MHS	2008 to Current
Channels	Gaps in Spectral Bands, High Noise Popping Channels within the CrIS Band	IASI SW has high Noise
Channel Properties	Not the Same	Same
Cloud Clearing Implications	AIRS 9 FOV Cloud clearing Advantage (?)	IASI 4 FOV cloud-clearing (difficulty ?)

CrIS, Interferometer, ~1300 channels; Resolution in 3 bands: 1.125, 2.5, 4.5cm⁻¹; Orbit:1:30 PM/AM; Altitude 833 km; 3 x 3 FOVs

AIRS and IASI Accepted Samples Cloud-Clearing - Noise Amplification Plot

- PDF(AIRS-Brown; IASI- Pink) | CDF(AIRS-RED; IASI-Blue)
- For a given Amplification factor as Rejection Threshold
 - » AIRS Could place more number of Total Samples to Access for Selection.
 - » AIRS Could provide about 5% more better quality clear-column radiances.

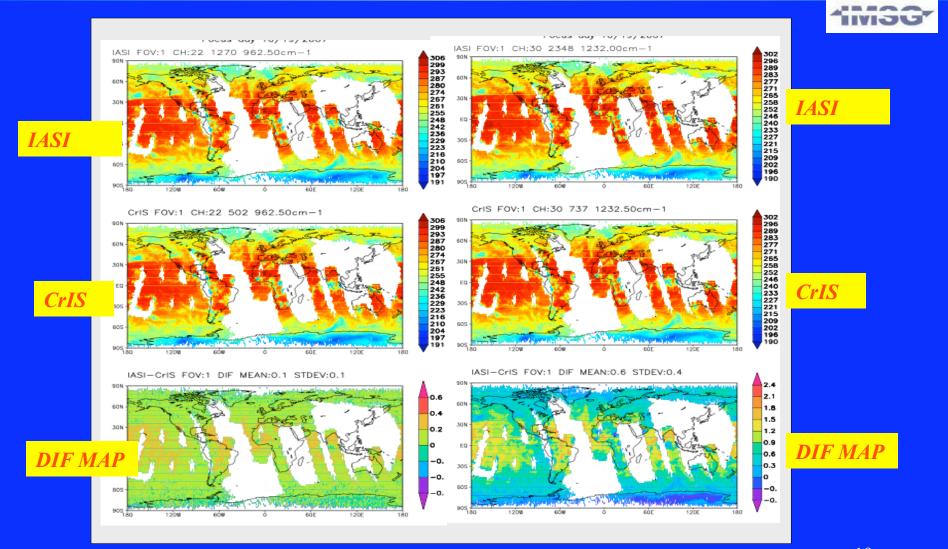
AIRS retrievals appear to attain some advantages with 9FOV cloud-clearing compared to IASI 4 FOV cloud clearing. AIRS like IASI experiment (4 FOV AIRS) with real data also shows a slight advantage in cloud-clearing compared to IASI retrievals. AIRS FOVs (Overlapping and spread-out) vs. IASI FOVs (Circular and Closer) where AIRS might be having a better S/N compared IASI.

 IASI 4 FOVs – Cloud clearing : Slight tendency of confusion to contrast clear and overcast

IASI-to-CrIS Xu Liu's Proxy Data Algorithm (From Xu Liu's Talk: SOAT Meeting, May 2009) We have implemented Xu Liu's package at NOAA/STAR

Steps for Generating CrIS proxy data from IASI 🤼

- Matching spectral resolution between two FTS instruments are easy and exact
 - Transform the IASI spectrum into interferogram via FFT
 - 2. Truncate the interferogram according to the maximum OPD of the lower-resolution FTS instrument
 - Divide the interferogram by the IASI apodization function
 - 4. Multiply the interferogram by the CrIS apodization function
 - Perform inverse FTT to convert the modified interferogram into spectral domain
 - Interpolate 4 IASI FOV to 9 CrIS FOV
- Use can choose from three apdization functions for CrlS
 - Unapodised, Hamming, and Blackmam
- Can include local angle adjustment before step 6

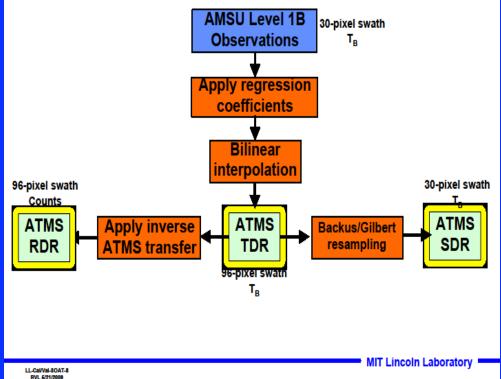

$$R_n^{CriS} = \frac{1}{N} \sum_{k=0}^{N-1} \frac{a(k)}{g(k)} \left(\sum_{j=0}^{M-1} R_j^{IASI} e^{2\pi i j k / M} \right) e^{-2\pi i k n / N}$$

a(k) is the CrIS apodization function

g(k) is the IASI apodization function

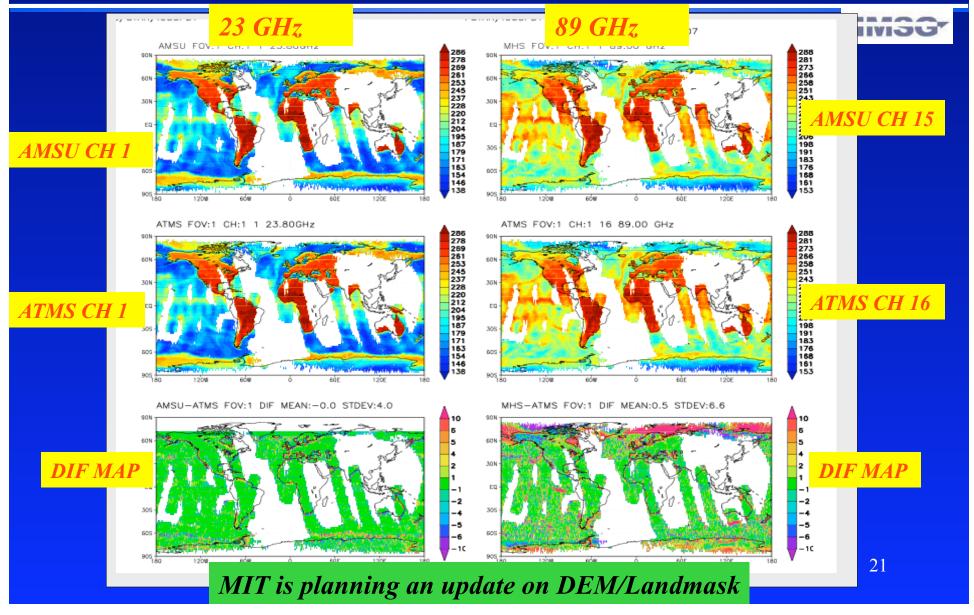
IASI-to-CrIS Xu Liu's Proxy Data Algorithm Results for the Focus Day, 10/19/2007

ATMS Proxy Data Generation - Bill Blackwell's Algorithm (From Bill Blackwell's Talk : SOAT Meeting May 2009) Bill Blackwell has provided the Executable to NOAA/STAR



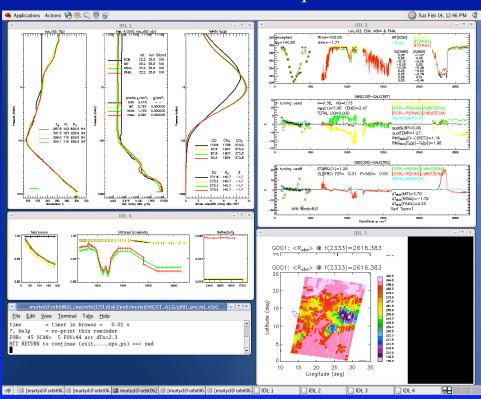
Generation of ATMS Proxy Data

ATMS Proxy Data Generation Flow Chart


- AMSU-A/B observations can be transformed (spatially and spectrally) to resemble ATMS observations
 - 11 channels are identical
 - 5 channels are identical EXCEPT for polarization
 - 6 channels are new, but can be estimated [with some error]
 - Footprint sizes and spatial sampling are different for frequencies < 89 GHz
 - ATMS measures wider swath angles
 - Orbits altitudes are slightly different

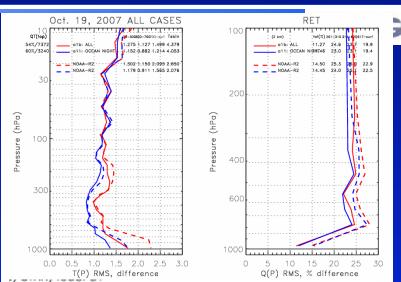
MIT Lincoln Laboratory LL-Cal/Val-8OAT-7 RVL 6/21/2009

AMSU-A/MHS to ATMS - Bill Blackwell's Algorithm Results for the Focus Day, 10/19/2007 23GHz and 89 GHz



Preparations at NOAA for CrIS/ATMS

- NGAS EDR Algorithm Implemented
- Proxy Data Set Generation
 - » IASI/AMSU-A/MHS Done
 - » AIRS/AMSU-A Planned
- Adapting NUCAPS for CrlS/ ATMS – In Process
- Adapt AIRS/IASI Interactive Ret-evaluation System (IRS) to analyze NGAS EDRs.
- Develop Statistical Metrics to Evaluate various types of NGAS retrievals.


Pl_retccr, 'run-v52', 'G0001', 001 For AIRS/AMSU-A Sept.6, 2002.

Planned NOAA's Package to IPO

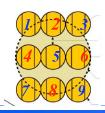
- Provide Focus Day Granule
 Data Sets (October 10, 2007)
 - » 253 Granules of Matched
 - IASI/AMSU-A/MHS
 - AVN / ECMWF
 - IASI Retrievals from NUCAPS
 - FG Retrievals
 - Physical Retrievals
 - Ancillary Data
 - Proxy CrlS/ATMS Data
 - Proxy Retrievals from NGAS
 - Proxy Retrievals from NUCAPS (?)
 - Assessment Report

2007/10/19 IASI Focus Day Coverage

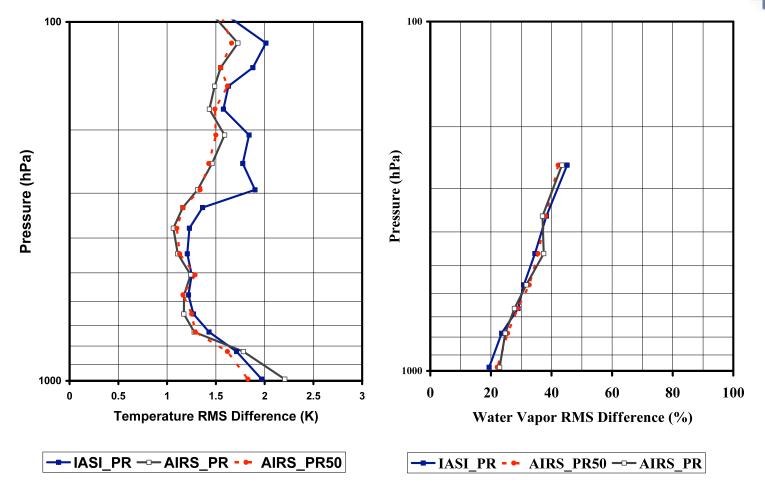
What We Wish to Achieve

- Help Expedite NGAS EDR Algorithm Verification with Proxy
 Radiances
- Evaluation of CrIMSS EDRs
 - 1. Whether the EDRs are Comparable to the EDRs retrieved from Similar Sounding Instruments
 - 1. Aqua-AIRS/AMSU-A Retrievals
 - 2. MetOp-IASI/AMSU-A/MHS Retrievals
 - 3. How good are they wrt RAOBs, ECMWF, GFS
 - 2. How much Improvement could be seen with the CrIS/ ATMS retrievals compared to the currently operating Baseline Systems
 - ATOVS Retrievals (AMSU-A/B + HIRS)
 - » M2-ATOVS (9:30 AM/PM) from MetOp
 - » NOAA-18/19 Retrievals; MIRS
 - 3. Whether EDRs can Reproduce Global/Annual Cycles
 - 4. Differences and Impacts of 9FOV vs. 4 FOV Cloud Clearing

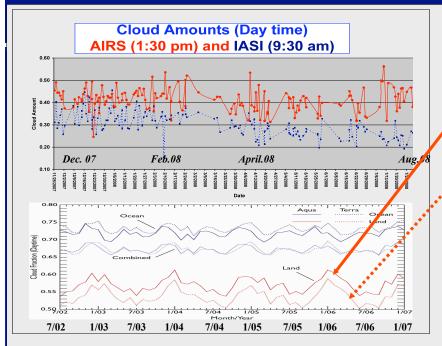
Concluding Remarks

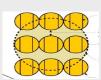

- The IASI/AIRS matched data sets (Retrievals, RAOBs, ECMWF etc) presented have the potential to provide the most needed truth data to 'Test and Validate' future CrIS/ATMS NGAS products.
 - » Proxy data sets could be generated using both the approaches (IASI->CrIS; AIRS->CrIS; AMSU->ATMS) and can be used to fully characterize CrIS/ATMS retrievals.
 - » Once optimized with the proxy data set generation, the collocated matches (RAOB or ECMWF) could be used to generate a first-guess regression methodology for the NUCAPS CrIS/ATMS System.

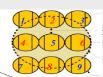
Backup Slides



- Thank you for your Attention
- Comments/Suggestions/Questions...
- Contact:
 - » Murty.Divakarla@noaa.gov
 - » Chris.Barnet@noaa.gov

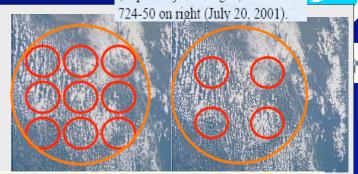

IASI & AIRS with -Rej3 and V50 QA T(p), q(p) RMS Difference


IASI, AIRS with -Rej3 Option, AIRS with V5 QA
IASI & AIRS Collocated to the same Ground Location



MODIS Derived Time Series of Cloud Fraction during the Daytime (M. D. King, S. Platnick et al. – NASA GSFC)

AIRS Retreivals (9 FOVs)



AIRS Like IASI 4 FOVs 2,4,6,8

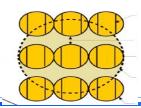
THREE Experiments

Aqua-Land

Terra-Land

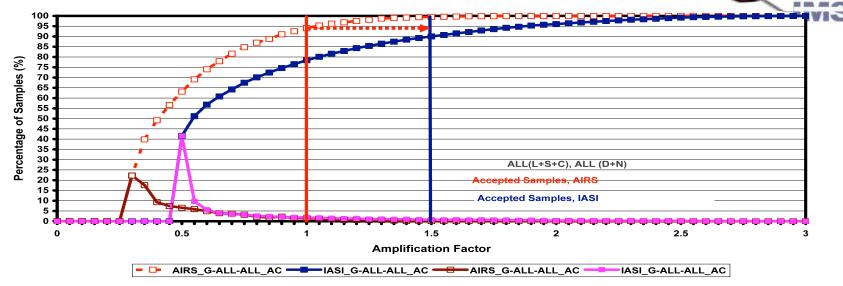
NOAA

•	AIRS	IASI	
FOR (50Km)	9 FOVs	4 FOVs	
Channels Used for CC	58 (LW, Window)	69 (LW,SW Window	
Ampl Factor	1/3 = A = 10	1/2 = A = 10	
Error in ή	Probably Lower	Probably Higher	
Cloud Contrast	Probably Higher	Probably Lower	


$$R_{1}(n) = (1 - \alpha_{1}) \cdot R_{clr}(n) + \alpha_{1} \cdot R_{cld}(n)$$

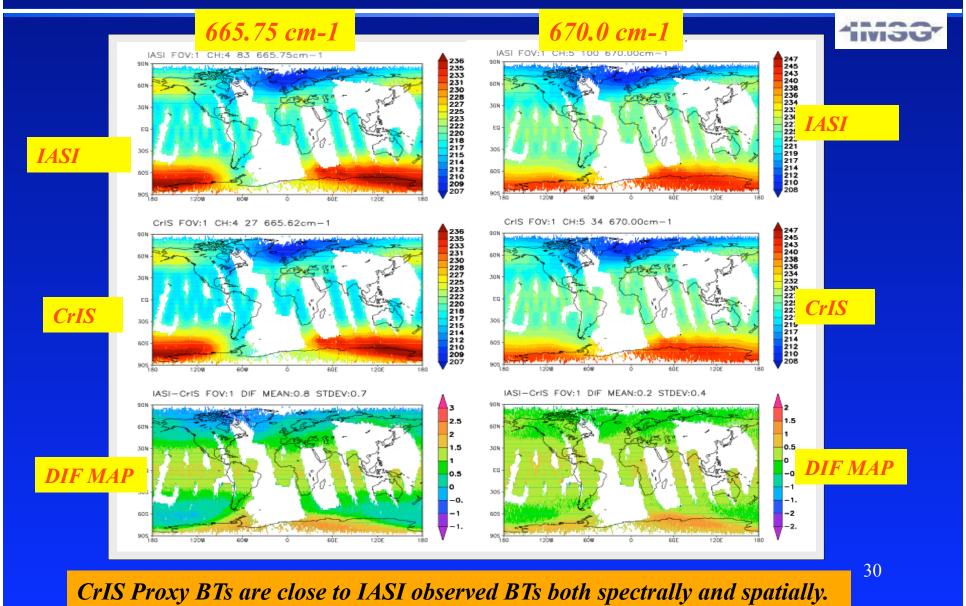
$$R_{2}(n) = (1 - \alpha_{2}) \cdot R_{clr}(n) + \alpha_{2} \cdot R_{cld}(n)$$

$$\eta = \alpha_{1}/(\alpha_{2} - \alpha_{1})$$


$$R_{ccr}(n) = \overline{R_{j}(n)} + \sum_{j=1} \eta_{j} \cdot \left(\overline{R_{j}(n)} - R_{j}\right)$$

$$A = \sqrt{1/N_{f}(1 + \sum \acute{\eta})^{2} + \sum \acute{\eta}^{2}}$$

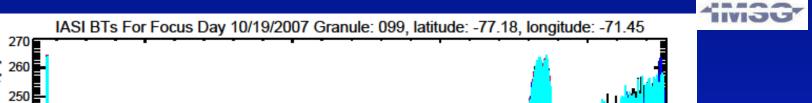
AIRS and IASI Accepted Samples Cloud-Clearing - Noise Amplification Plot

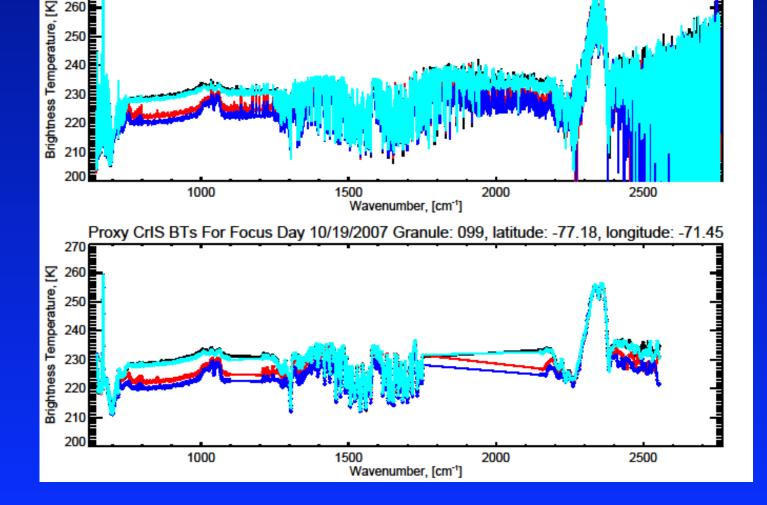

- PDF(AIRS-Brown; IASI-Pink) | CDF(AIRS-RED; IASI-Blue)
- For a given Amplification factor as Rejection Threshold
 - » AIRS Could place more number of Total Samples to Access for Selection.
 - » AIRS Could provide about 5% more better quality clear-column radiances.

AIRS retrievals appear to attain some advantages with 9FOV cloud-clearing compared to IASI 4 FOV cloud clearing. AIRS like IASI experiment (4 FOV AIRS) with real data also shows a slight advantage in cloud-clearing compared to IASI retrievals. AIRS FOVs (Overlapping and spread-out) vs. IASI FOVs (Circular and Closer) where AIRS might be having a better S/N compared IASI.

 IASI 4 FOVs – Cloud clearing : Slight tendency of confusion to contrast clear and overcast

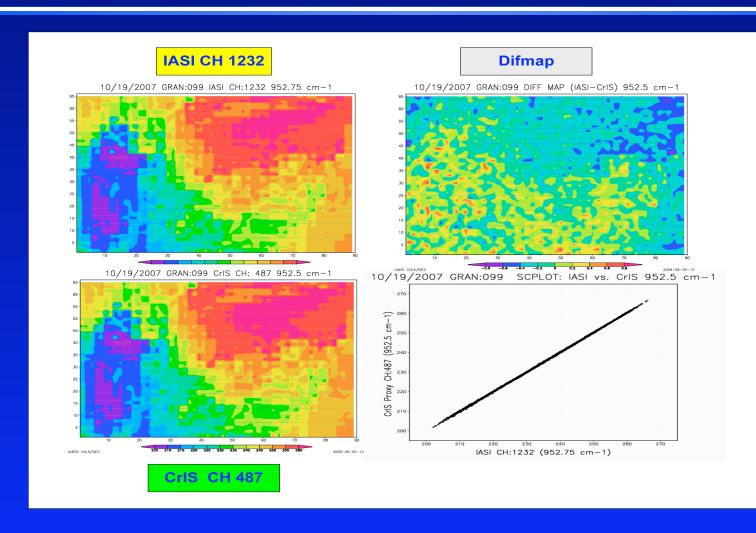
IASI-to-CrIS Xu Liu's Proxy Data Algorithm Results for the Focus Day, 10/19/2007




IASI-to-CrIS Xu Liu's Proxy Data Algorithm Results for Focus Day, Gran:099, 10/19/2007

240 ፟

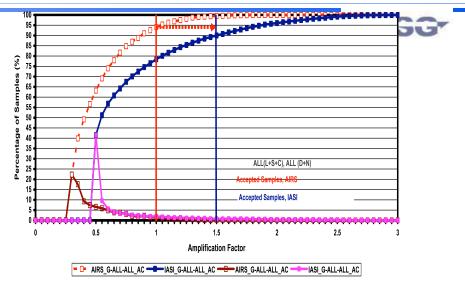
230



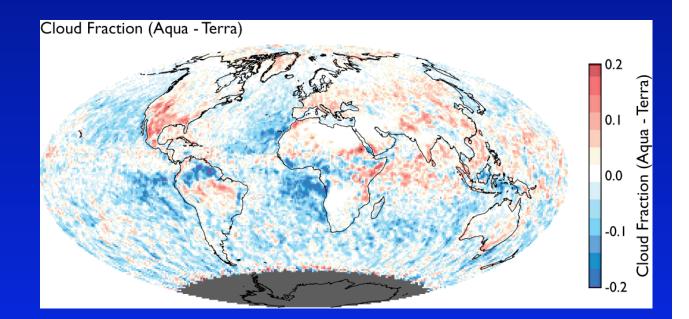
IASI-to-CrIS Xu Liu's Proxy Data Algorithm Results for the Focus Day 10/19/2007, Gran:099





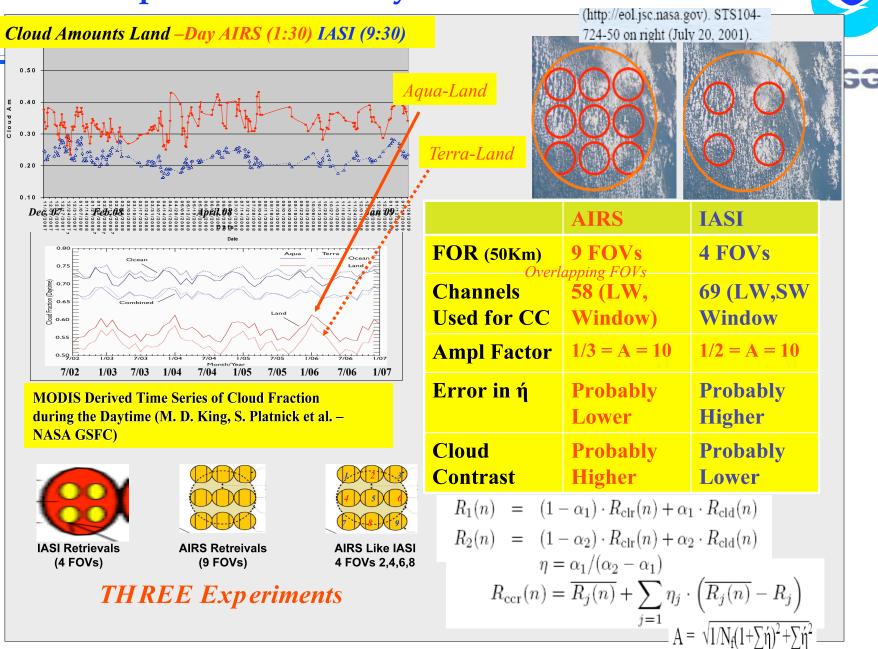


Cloud-Clearing Abilities of AIRS and IASI Implications to Proxy Data Generation

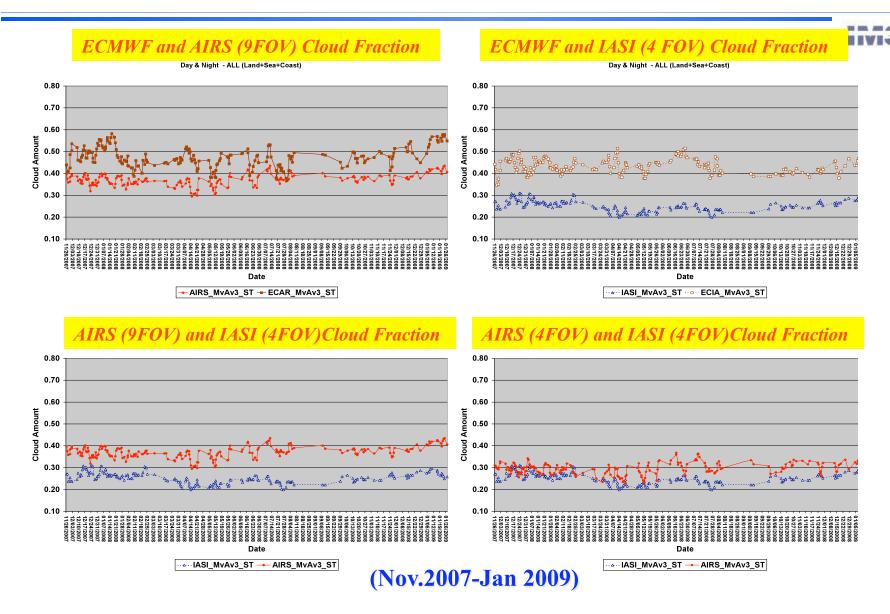


- PDF(AIRS-Brown; IASI- Pink) | CDF(AIRS-RED; IASI-Blue)
- For a given Amplification factor as Rejection
 Threshold :AIRS Could provide about 5% more better quality clear-column radiances.
- AIRS retrievals appear to attain some advantages with 9FOV cloud-clearing compared to IASI 4 FOV cloud clearing. AIRS like IASI experiment (4 FOV AIRS) with real data also shows a slight advantage in cloud-clearing compared to IASI retrievals. AIRS FOVs (Overlapping and spread-out) vs. IASI FOVs (Circular and Closer) where AIRS might be having a better S/N compared IASI.
- IASI 4 FOVs Cloud clearing : Slight tendency of confusion to contrast clear and overcast

Aqua Cloud Fraction - Terra Cloud Fraction from MODIS[®] (M. D. King, S. Platnick et al. - NASA GSFC)

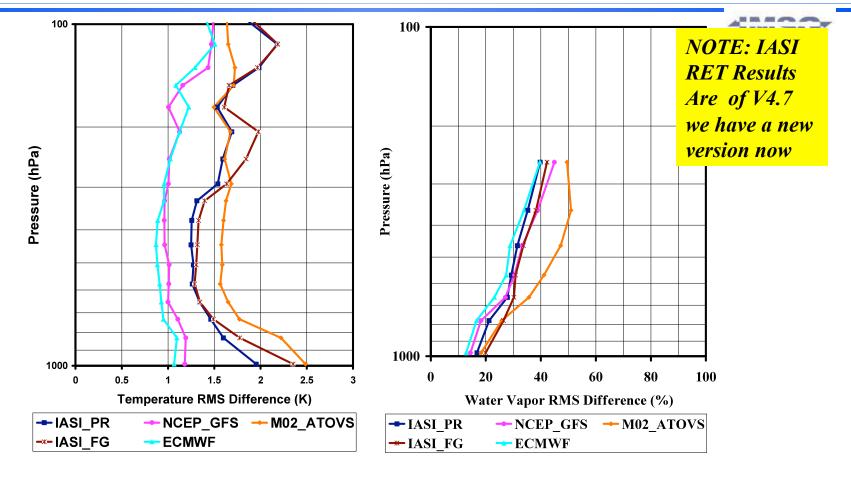


- > Terra
 - Higher over oceans than land
 - ✓ Marine stratocumulus
- > Aqua
 - Higher over land than ocean
 - ✓ Interior continents
 - ✓ Desert southwestern US
 - ✓ Australia
 - Higher over ocean than land
 - ✓ Northern Indian Ocean

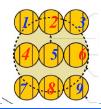

Cloud-Clearing Abilities of AIRS and IASI Implications to Proxy Data Generation

NOAA

AIRS (1:30 Hrs) and IASI (10:30 Hrs) Daily Mean Cloud Fractions The Match-up Data Set is predominantly over Land

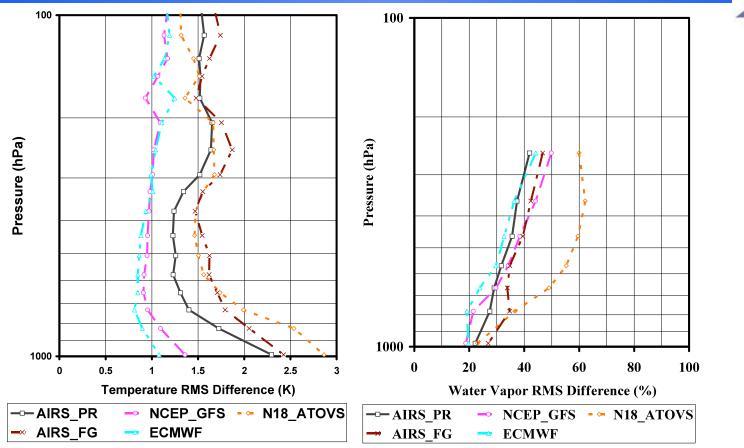


IASI- T(p), q(p) RMS Difference Global (L+S+Coast) NSAMP=21035 Yield: 50%



Acceptance Criteria: Mid-Troposphere Temp Flag = 0

RAOB vs. IASI AVN ATOVS ECMWF FG


(Proxy Radiances Produced from IASI/AMSU-A/MHS Can be used to generate NGST and NUCAPS retrievals using these data sets, and similar stats can be generated for CrIS/ATMS Proxy Retrievals For Global/Land/Sea etc.

AIRS-T(p), q(p) RMS Difference Global (L+S+Coast) NSAMP=7897, Yield: 34%

Acceptance Criteria: Mid-Troposphere Temp Flag = 0

RAOB vs. AIRS AVN ATOVS ECMWF FG Dotted Lines: AIRS

(Proxy Radiances Produced from AIRS/AMSU-A Can be used to generate NGST and NUCAPS retrievals using these data sets, and similar stats can be generated for CrIS/ATMS Proxy Retrievals For Global/Land/Sea etc.